Search results

Search for "CVD graphene" in Full Text gives 18 result(s) in Beilstein Journal of Nanotechnology.

On the mechanism of piezoresistance in nanocrystalline graphite

  • Sandeep Kumar,
  • Simone Dehm and
  • Ralph Krupke

Beilstein J. Nanotechnol. 2024, 15, 376–384, doi:10.3762/bjnano.15.34

Graphical Abstract
  • and dislocations are currently under development [13][14]. This leads to the situation that the role of grain boundaries for graphene-based sensing of strain, pressure, and motion has not been explored and remains unresolved [15][16][17][18], although in CVD graphene the domain size is typically of
PDF
Album
Full Research Paper
Published 08 Apr 2024

DNA aptamer selection and construction of an aptasensor based on graphene FETs for Zika virus NS1 protein detection

  • Nathalie B. F. Almeida,
  • Thiago A. S. L. Sousa,
  • Viviane C. F. Santos,
  • Camila M. S. Lacerda,
  • Thais G. Silva,
  • Rafaella F. Q. Grenfell,
  • Flavio Plentz and
  • Antero S. R. Andrade

Beilstein J. Nanotechnol. 2022, 13, 873–881, doi:10.3762/bjnano.13.78

Graphical Abstract
  • layer of SU-8. Figure S1a (Supporting Information File 1) shows an optical microscopy image of the typical CVD graphene device used in this work. The functionalization of the graphene devices with ZIKV60 aptamers was realized by overnight incubation in wet atmosphere with a 5 μL drop of 1 μM ZIKV60
  • a Hill–Langmuir curve fitted to the experimental data (R2 = 0.9969). ZIKV60 aptamer characteristics. Supporting Information Optical microscopy image of our typical CVD graphene device, schematic illustration of the resulting ZIKV60-functionalized graphene devices and experimental setup used in the
PDF
Album
Supp Info
Full Research Paper
Published 02 Sep 2022

Optimizing PMMA solutions to suppress contamination in the transfer of CVD graphene for batch production

  • Chun-Da Liao,
  • Andrea Capasso,
  • Tiago Queirós,
  • Telma Domingues,
  • Fatima Cerqueira,
  • Nicoleta Nicoara,
  • Jérôme Borme,
  • Paulo Freitas and
  • Pedro Alpuim

Beilstein J. Nanotechnol. 2022, 13, 796–806, doi:10.3762/bjnano.13.70

Graphical Abstract
  • be considered: (i) metallic particles from the Cu or Ni etching process and (ii) PMMA residues after the removal and rinsing processes. Both contaminations are leading causes of undesired p-type doping in CVD graphene, accompanied by a deterioration of its electrical properties [19][20][21][22]. The
PDF
Album
Supp Info
Full Research Paper
Published 18 Aug 2022

Templating effect of single-layer graphene supported by an insulating substrate on the molecular orientation of lead phthalocyanine

  • K. Priya Madhuri,
  • Abhay A. Sagade,
  • Pralay K. Santra and
  • Neena S. John

Beilstein J. Nanotechnol. 2020, 11, 814–820, doi:10.3762/bjnano.11.66

Graphical Abstract
  • -on configuration are still observed. In the case of CVD graphene transferred on to substrates by the polymer method, it has been reported that the presence of polymer residues can cause edge-on orientation for pentacene on graphene [11]. However, in this work, effort has been taken to remove any
PDF
Album
Full Research Paper
Published 19 May 2020

Effects of post-lithography cleaning on the yield and performance of CVD graphene-based devices

  • Eduardo Nery Duarte de Araujo,
  • Thiago Alonso Stephan Lacerda de Sousa,
  • Luciano de Moura Guimarães and
  • Flavio Plentz

Beilstein J. Nanotechnol. 2019, 10, 349–355, doi:10.3762/bjnano.10.34

Graphical Abstract
  • addition, we show that the size of these well-ordered domains is highly influenced by post-photolithography cleaning processes. Finally, we show that by using poly(dimethylglutarimide) (PMGI) as a protection layer, the production yield of CVD graphene devices is enhanced. Conversely, their electrical
  • properties are deteriorated as compared with devices fabricated by conventional production methods. Keywords: CVD graphene; defects; mobility; well-ordered domain; Introduction The unique properties of graphene, such as high conductivity, high carrier mobility at room temperature, high sensitivity of the
  • . Experimental We made use of CVD graphene on top of a 300 nm thick SiO2 layer, which was purchased from Graphene Platform. The graphene devices were produced in the field-effect transistor configuration (GFET) in two photolithography steps (Figure 1). The first step was employed for defining the graphene device
PDF
Album
Full Research Paper
Published 05 Feb 2019

Investigation of CVD graphene as-grown on Cu foil using simultaneous scanning tunneling/atomic force microscopy

  • Majid Fazeli Jadidi,
  • Umut Kamber,
  • Oğuzhan Gürlü and
  • H. Özgür Özer

Beilstein J. Nanotechnol. 2018, 9, 2953–2959, doi:10.3762/bjnano.9.274

Graphical Abstract
  • array with maxima located in between the two carbon atoms was acquired in STM topography. Keywords: atomic force microscopy; CVD graphene; scanning tunneling microscopy; simultaneous operation; small amplitude; Introduction Graphene has been widely studied because of its potential use in future
PDF
Album
Full Research Paper
Published 28 Nov 2018

Review: Electrostatically actuated nanobeam-based nanoelectromechanical switches – materials solutions and operational conditions

  • Liga Jasulaneca,
  • Jelena Kosmaca,
  • Raimonds Meija,
  • Jana Andzane and
  • Donats Erts

Beilstein J. Nanotechnol. 2018, 9, 271–300, doi:10.3762/bjnano.9.29

Graphical Abstract
  • significant degradation of graphene properties and, consequently, poor performance of the CVD-graphene-based NEM switches. Also, the Young’s modulus of CVD graphene is only about 40% of that of exfoliated pristine graphene (0.4 TPa vs 0.98 TPa [128]). CVD graphene NEM switching elements with comparable
PDF
Album
Review
Published 25 Jan 2018

Electro-optical characteristics of a liquid crystal cell with graphene electrodes

  • Nune H. Hakobyan,
  • Hakob L. Margaryan,
  • Valeri K. Abrahamyan,
  • Vladimir M. Aroutiounian,
  • Arpi S. Dilanchian Gharghani,
  • Amalya B. Kostanyan,
  • Timothy D. Wilkinson and
  • Nelson Tabirian

Beilstein J. Nanotechnol. 2017, 8, 2802–2806, doi:10.3762/bjnano.8.279

Graphical Abstract
  • . Results and Discussion Synthesis of graphene films The graphene was obtained by a chemical vapor deposition (CVD) process. Details of synthesis and extensive characterization of the CVD graphene can be found in prior works [13][14]. The monolayer graphene film was then transferred from the Cu foil to a
PDF
Album
Full Research Paper
Published 28 Dec 2017

A systematic study of the controlled generation of crystalline iron oxide nanoparticles on graphene using a chemical etching process

  • Peter Krauß,
  • Jörg Engstler and
  • Jörg J. Schneider

Beilstein J. Nanotechnol. 2017, 8, 2017–2025, doi:10.3762/bjnano.8.202

Graphical Abstract
  • substrate [11][12][13]. A major challenge towards the usage of graphene is the isolation from this planar metal substrate [14][15][16]. Besides mechanical exfoliation [17][18] and electrochemical delamination [19][20][21], polymer-supported etching of the substrate is generally used to transfer CVD graphene
  • onto various substrates [14][22][23][24]. The transfer of CVD graphene by chemical etching is based on the redox reaction between the metal catalyst and an oxidizing agent in aqueous solution [22][23][25][26][27][28]. As the metal dissolves in the etchant solution, graphene remains floating on the
  • result in the formation of non-stoichiometric iron(II) oxide nanoparticles. After successfully transferring the functionalized CVD graphene, iron(II) oxide nanoparticles are located between the target substrate and the carbon monolayer. It is interesting to note, that the as-synthesized iron(II) oxide
PDF
Album
Supp Info
Full Research Paper
Published 26 Sep 2017

CVD transfer-free graphene for sensing applications

  • Chiara Schiattarella,
  • Sten Vollebregt,
  • Tiziana Polichetti,
  • Brigida Alfano,
  • Ettore Massera,
  • Maria Lucia Miglietta,
  • Girolamo Di Francia and
  • Pasqualina Maria Sarro

Beilstein J. Nanotechnol. 2017, 8, 1015–1022, doi:10.3762/bjnano.8.102

Graphical Abstract
  • literature for CVD graphene (between 102 and 103 cm2/V·s), in the calculations, a carrier mobility of μ ≈ 1000 cm2/V·s has been assumed [29][30][31]. During the exposure, the number of carriers per unit surface has changed by the fraction ΔG/G0 in 10 min. This quantity is linked to the number of adsorbed
  • analyte adsorption rather than the kinetics of the surface reactions. From this analysis a predisposition of transfer-free CVD graphene towards NO2 detection has clearly emerged. The remarkable control on the sensing film geometry, which is specific to the presented technique, enables a quantification of
  • has been set to 0.25 Hz. The dynamic response has been quantified as the percentage variation of the conductance: where G0 is the unperturbed conductance value and Gf is the conductance value at the end of the exposure. Optical micrograph of one of the CVD graphene-based chemiresistive devices. The
PDF
Album
Full Research Paper
Published 08 May 2017

Synthesis of graphene–transition metal oxide hybrid nanoparticles and their application in various fields

  • Arpita Jana,
  • Elke Scheer and
  • Sebastian Polarz

Beilstein J. Nanotechnol. 2017, 8, 688–714, doi:10.3762/bjnano.8.74

Graphical Abstract
  • (Figure 1). Bottom-up growth of graphene includes micromechanical exfoliation of bulk graphite. The processes included in the bottom-up synthesis of graphene are CVD [39][40], arc discharge [41], and epitaxial growth [42]. Using CVD, graphene and few-layer graphene have been grown on catalytic metal
  • deoxygenation [69], or chemical deoxygenation [70]. In terms of electrical conductivity, the quality of reduced graphene is lower than the GS prepared by CVD. The intrinsic quality of CVD graphene films makes them an excellent candidate for optoelectronic and electronic applications. In brief, the reduction
PDF
Album
Review
Published 24 Mar 2017

Graphene functionalised by laser-ablated V2O5 for a highly sensitive NH3 sensor

  • Margus Kodu,
  • Artjom Berholts,
  • Tauno Kahro,
  • Mati Kook,
  • Peeter Ritslaid,
  • Helina Seemen,
  • Tea Avarmaa,
  • Harry Alles and
  • Raivo Jaaniso

Beilstein J. Nanotechnol. 2017, 8, 571–578, doi:10.3762/bjnano.8.61

Graphical Abstract
  • present work, we demonstrate functionalisation of single-layer CVD graphene with a few layers of laser deposited V2O5. The amount and chemical state of vanadium oxide on graphene was characterized by X-ray photoelectron spectroscopy and X-ray fluorescence. The impact of the PLD process on graphene defect
  • the Cu growth surface of the CVD process or wrinkles left in the graphene sheet during the transfer process from the copper foil to Si/SiO2 substrate. These features are characteristic for CVD graphene and can also be seen in the SEM image of pristine graphene shown in Figure 2a. The islands of about
  • parts of graphene exposed to the gas, since the V2O5 material is on average only 2.5 layers thick and can cover the graphene surface unevenly. Conclusion CVD graphene was functionalised by laser deposition of a sub-nanometre layer of catalytically active V2O5. The emergence of defect-related D and D
PDF
Album
Full Research Paper
Published 07 Mar 2017

Advances in the fabrication of graphene transistors on flexible substrates

  • Gabriele Fisichella,
  • Stella Lo Verso,
  • Silvestra Di Marco,
  • Vincenzo Vinciguerra,
  • Emanuela Schilirò,
  • Salvatore Di Franco,
  • Raffaella Lo Nigro,
  • Fabrizio Roccaforte,
  • Amaia Zurutuza,
  • Alba Centeno,
  • Sebastiano Ravesi and
  • Filippo Giannazzo

Beilstein J. Nanotechnol. 2017, 8, 467–474, doi:10.3762/bjnano.8.50

Graphical Abstract
  • graphene. In particular, it is expected that the polycrystalline nature of CVD graphene has a direct effect on the current transport in a large area channel. In addition to these natural defects originating from CVD growth, the graphene membrane is subjected to significant strain if transferred to a rough
PDF
Album
Full Research Paper
Published 20 Feb 2017

Optical absorption signature of a self-assembled dye monolayer on graphene

  • Tessnim Sghaier,
  • Sylvain Le Liepvre,
  • Céline Fiorini,
  • Ludovic Douillard and
  • Fabrice Charra

Beilstein J. Nanotechnol. 2016, 7, 862–868, doi:10.3762/bjnano.7.78

Graphical Abstract
  • ) has been formed onto CVD graphene transferred on a transparent substrate. Its structure has been probed by scanning tunnelling microscopy and its optical properties by polarized transmission spectroscopy at varying incidence. The results show that the transition dipoles of adsorbed PTCDI are all
  • to various predetermined patterns [31]. These techniques can be extended to monolayer CVD graphene as a substrate [32], which offers optical transparency when transferred from its native CVD substrate –usually copper– onto a transparent one such as quartz or polyethylene terephthalate (PET). This
  • offers opportunities for advanced optical characterizations in a transmission geometry, such as polarized variable-incidence transmission spectroscopy. In addition, the electrical conductivity of a CVD graphene monolayer is sufficiently high to apply scanning tunnelling microscopy (STM) and thus
PDF
Album
Letter
Published 14 Jun 2016

Synthesis and applications of carbon nanomaterials for energy generation and storage

  • Marco Notarianni,
  • Jinzhang Liu,
  • Kristy Vernon and
  • Nunzio Motta

Beilstein J. Nanotechnol. 2016, 7, 149–196, doi:10.3762/bjnano.7.17

Graphical Abstract
PDF
Album
Review
Published 01 Feb 2016

Nitrogen-doped graphene films from chemical vapor deposition of pyridine: influence of process parameters on the electrical and optical properties

  • Andrea Capasso,
  • Theodoros Dikonimos,
  • Francesca Sarto,
  • Alessio Tamburrano,
  • Giovanni De Bellis,
  • Maria Sabrina Sarto,
  • Giuliana Faggio,
  • Angela Malara,
  • Giacomo Messina and
  • Nicola Lisi

Beilstein J. Nanotechnol. 2015, 6, 2028–2038, doi:10.3762/bjnano.6.206

Graphical Abstract
  • production of high-quality graphene for electronics is probably chemical vapor deposition (CVD). By this technique it is possible to produce graphene with large grain sizes and high crystalline quality over large areas [14]. Nonetheless, the sheet resistance of most CVD-graphene films (even in single-crystal
  • is the main parameter dictating the characteristics of the pyridine-CVD graphene films, as also observed for the optical properties and the thickness of the films. At each temperature, the sheet resistance is observed to sweep over a narrow range of values when adding the two different hydrogen flows
  • . Hydrogen seems to lead to a slight decrease in sheet resistance at 1000 and 1070 °C, while this trend is reversed at 930 °C. The electrical characteristics of the pyridine films can be compared to those of ethanol-CVD graphene in Table 3. In this case, the samples with the lowest sheet resistance at each
PDF
Album
Supp Info
Full Research Paper
Published 14 Oct 2015

Electroburning of few-layer graphene flakes, epitaxial graphene, and turbostratic graphene discs in air and under vacuum

  • Andrea Candini,
  • Nils Richter,
  • Domenica Convertino,
  • Camilla Coletti,
  • Franck Balestro,
  • Wolfgang Wernsdorfer,
  • Mathias Kläui and
  • Marco Affronte

Beilstein J. Nanotechnol. 2015, 6, 711–719, doi:10.3762/bjnano.6.72

Graphical Abstract
  • suppression of conductance fluctuations [14]. Recent works have successfully made use of graphene for the realization of electrodes in molecular devices [10][17]. Specifically, parallel multi-junctions devices have been fabricated in chemical vapor deposition (CVD) graphene by electron beam lithography and
PDF
Album
Supp Info
Full Research Paper
Published 11 Mar 2015

Micro- and nanoscale electrical characterization of large-area graphene transferred to functional substrates

  • Gabriele Fisichella,
  • Salvatore Di Franco,
  • Patrick Fiorenza,
  • Raffaella Lo Nigro,
  • Fabrizio Roccaforte,
  • Cristina Tudisco,
  • Guido G. Condorelli,
  • Nicolò Piluso,
  • Noemi Spartà,
  • Stella Lo Verso,
  • Corrado Accardi,
  • Cristina Tringali,
  • Sebastiano Ravesi and
  • Filippo Giannazzo

Beilstein J. Nanotechnol. 2013, 4, 234–242, doi:10.3762/bjnano.4.24

Graphical Abstract
  • properties of the graphene membrane. In this paper, we investigated the morphological and electrical properties of CVD graphene transferred onto SiO2 and on a polymeric substrate (poly(ethylene-2,6-naphthalene dicarboxylate), briefly PEN), suitable for microelectronics and flexible electronics applications
  • value in the absence of interface traps. A similar macroscopic electrical characterization using TLM structures was performed also in CVD graphene transferred onto PEN. In this case, the sheet resistance and specific contact resistance only were measured, whereas an estimate of mobility and carrier
  • graphene on PEN is about 2.3× higher than on SiO2, whereas the ρc is about 8× higher. Since the same CVD graphene was used for both samples and similar transfer quality has been achieved on both substrates, these electrical differences can be ascribed to the different kind of interaction between graphene
PDF
Album
Full Research Paper
Published 02 Apr 2013
Other Beilstein-Institut Open Science Activities